Code: EE6T5

III B.Tech-II Semester–Regular/Supplementary Examinations–March 2019

POWER SYSTEM ANALYSIS (ELECTRICAL & ELECTRONICS ENGINEERING)

Duration: 3 hours

Max. Marks: 70

PART – A

Answer *all* the questions. All questions carry equal marks 11x 2 = 22 M

- 1. a) Define symmetrical short circuit current.
 - b) Write formula for converting PU values from one base to other base values.
 - c) Define short circuit MVA.
 - d) What is the need for short circuit analysis?
 - e) Define negative sequence impedance.
 - f) What is the necessity of power flow studies.
 - g) Explain why direct solution of load flow problem is not possible.
 - h) Write the advantages of N-R method.
 - i) What is Jacobian matrix?
 - j) Define 'stability' of power system?
 - k) Define transient stability.

PART – B

Answer any *THREE* questions. All questions carry equal marks. $3 \ge 16 = 48 \text{ M}$

- 2. a) What are the advantages of per-unit computations? 6 M
 - b) A three phase transmission line operating at 33kV and having a resistance of 50hms and reactance of 200hm is connected to generating station through 11kV/33kV 15MVA step-up, 5% reactance transformer connected to the bus bar are two alternators one of 11kV, 10MVA with 10% reactance and another of 11kV, 5 MVA with 7.5% reactance. Calculate the short circuit MVA fed to the symmetrical fault between phases if it occurs at the end of the transmission line.
- 3. a) The line to ground voltages on high voltage side of step up transformer are 100 kV, 33 kV and 38 kV on phases a, b & c respectively. The voltages of phase 'a' lead that of phase 'b' by 100⁰ and lag that of phase 'c' by 176.5°. Determine analytically the symmetrical components of voltages.
 8 M
 - b) Derive an expression for fault current when double line to ground fault occurs on the terminals of a unloaded alternator? Draw the sequence network diagram.8 M
- 4. a) Explain with suitable example, formulation of Y_{bus} by direct inspection method.
 6 M

b) A two bus system is shown in below figure. Calculate the bus 2 voltage at the end of first iteration by G-S method. The elements of bus admittance matrix are $Y_{11}=Y_{22}=1.5 \mid -86^{\circ} P.U$ and $Y_{21}=Y_{12}=1.8 \mid -110^{\circ} P.U$. 10 M

5. a) Consider the single line diagram of a power system shown in figure. Take bus 1 as slack bus and Y_{bus} matrix is given below: 12 M

$$Y_{\text{bus}} = \begin{bmatrix} 3 - j5 & -1.2 + j6 & -1.5 + 8j \\ -1.2 + j6 & 4 - j12 & -3 + j6 \\ -1.5 + j8 & -3 + j6 & 5 - j6 \end{bmatrix}$$

Schedule of generation and loads are as follows

Bus No.	Generation		Load		Assumed Bus voltages
	MW	MVAR	MW	MVAR	
1	0	0	0	0	1.04+j0.0
2	0	0	250	150	1.0+j0.0
3	100	70	50	20	1.0+j0.0

Using Newton-Raphson method, obtain bus voltages at the end of 1st iteration.

Page **3** of **4**

- b) Compare Newton-Raphson and Fast Decoupled Load Flow methods. 4 M
- 6. a) What is Equal area Criterion? Discuss the application of Equal area criterion for the System Stability when a sudden change in mechanical input.8 M
 - b) Define and briefly explain the terms with respect to stability
 8 M
 - i) Steady state stability power limit.
 - ii) Transfer Reactance.
 - iii) Synchronizing power coefficient.